Pearson Edexcel Level 3

GCE Further Mathematics

Advanced Subsidiary

Further Pure Mathematics 2

Specimen paper

Time: 50 minutes

Paper Reference(s)

8FM0/22

m

You must have:

Mathematical Formulae and Statistical Tables, calculator

Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for algebraic manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use black ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 4 questions in this section of the paper. The total mark is 40.
- The marks for each question are shown in brackets use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

Answer ALL questions. Write your answers in the spaces provided.

2.1:	The Ascions For A Group 22 Cayley Tables & Finite Groups 23 Order & Si	ubgroups
1.	(i) The set $G = \{1, 3, 4, 9, 10, 12\}$ forms a group under the operation of multiplic modulo 13. $O^*b = O \times b \pmod{13}$	ation
	(a) Copy and complete the Cayley table below, Table 1, for this group.	(3)
	(b) Find a subgroup of (G, \times_{13}) of order 3.	(1)

(c) Explain why there can be no subgroup of (G, \times_{13}) of order 4.

(1)

(ii) Determine whether the set {1, 3, 6, 9, 12} under the operation of multiplication modulo 15 forms a group.(3)

	-					
× ₁₃	1	3	4	9	10	12
1		3	4	9	10	12
3	3	9	12		4	10
4	4	12	3	10		9
9	9	1	10	3	12	4
10	10	4		12	9	3
12	12	10	9	4	3	

(Total for Question 1 is 8 marks)

The order of the group is 6, and 4 does not divide 6, so there can be no subgroup of order 7 by Lagrange's theorem.	$\frac{1^{3} \cdot 1}{4^{3} \cdot 1} = \frac{3^{3} \cdot 1}{4^{3} \cdot 12} = \frac{3^{3} \cdot 1}{4^{3} \cdot 10} = \frac{10^{3} \cdot 12}{12^{3} \cdot 12} = \frac{11^{3} \cdot 12}$										WWW. MYN M
$\frac{1^{3} \cdot 1}{1^{4} \cdot 1} = \frac{3^{3} \cdot 1}{3^{5} \cdot 4} + \frac{3^{3} \cdot 12}{4^{5} \cdot 4} + \frac{9^{3} \cdot 1}{4^{5} \cdot 4} + \frac{10^{5} \cdot 3}{4^{5} \cdot 4} + \frac{10^{5} \cdot 3}{4^{5} \cdot 4} + \frac{10^{5} \cdot 3}{4^{5} \cdot 4} + \frac{10^{5} \cdot 4}{12^{5} \cdot 12} + $	1 ³ : 1 3 ³ : 1 $+^{3}: 12$ $+^{3}: 12$ $+^{3}: 12$ $+^{3}: 12$ $+^{3}: 12$ $+^{3}: 12$ 1 ⁴ : 1 $3^{4}: 3$ $+^{4}: 9$ $+^{5}: 9$ $+^{5}: 9$ $+^{5}: 9$ $+^{5}: 9$ $+^{5}: 9$ $+^{5}: 9$ $+^{5}: 9$ $+^{5}: 9$ $+^{5}: 9$ $+^{5}: 9$ $+^{5}: 9$ $+^{5}: 9$ $+^{5}: 12$ 1 ⁴ : 1 $+^{4}: 1$ $+^{5}: 1$ $+^{5}: 12$ $+^{5}: 12$ 1 ⁴ : 1 $+^{5}: 1$ $+^{4}: 1$ $+^{5}: 1$ $+^{5}: 12$ 1 ⁴ : 1 $+^{5}: 1$ $+^{5}: 1$ $+^{5}: 12$ 1 ⁵ : 1 $+^{5}: 1$ $+^{5}: 1$ $+^{5}: 12$ 1 ⁵ : 1 $+^{5}: 1$ $+^{5}: 1$ $+^{5}: 12$ 1 ⁶ : 1 $+^{5}: 1$ $+^{5}: 1$ $+^{5}: 12$ 1 ⁶ : 1 $+^{5}: 1$ $+^{5}: 1$ $+^{5}: 12$ 1 ⁷ : 1 $+^{5}: 1$ $+^{5}: 1$ $+^{5}: 12$ 1 ⁷ : 1 $+^{5}: 1$ $+^{5}: 1$ $+^{5}: 12$ 1 ⁷ : 1 $+^{5}: 1$ $+^{5}: 1$ $+^{5}: 12$ 1 ⁷ : 1 $+^{5}: 1$ $+^{5}: 1$ $+^{5}: 12$ 1 ⁷ : 1 $+^{5}: 1$ $+^{5}: 1$ $+^{5}: 12$ 1 ⁷ : 1 $+^{5}: 1$ $+^{5}: 1$ $+^{5}: 12$ $+^{5}: 12$ 1 ⁷ : 1 $+^{5}: 1$ $+^{5}: 12$ $+^{5}: 12$ 1 ⁷ : 1 $+^{5}: 12$ $+^{5}: 12$ $+^{5}: 12$ 1 ⁷ : 1 $+^{5}: 12$ $+^{5}: 12$ $+^{5}: 12$ $+^{5}: 12$ 1 ⁷ : 12 $+^{5}: 12$										naths
$\frac{1^{3} \cdot 1}{1^{4} \cdot 1} = \frac{3^{3} \cdot 1}{3^{5} \cdot 4} + \frac{3^{3} \cdot 12}{4^{5} \cdot 4} + \frac{9^{3} \cdot 1}{4^{5} \cdot 4} + \frac{10^{5} \cdot 3}{4^{5} \cdot 4} + \frac{10^{5} \cdot 3}{4^{5} \cdot 4} + \frac{10^{5} \cdot 3}{4^{5} \cdot 4} + \frac{10^{5} \cdot 4}{12^{5} \cdot 12} + $	1 ³ : 1 3 ³ : 1 $+^{3}: 12$ $+^{3}: 12$ $+^{3}: 12$ $+^{3}: 12$ $+^{3}: 12$ $+^{3}: 12$ 1 ⁴ : 1 $3^{4}: 3$ $+^{4}: 9$ $+^{5}: 9$ $+^{5}: 9$ $+^{5}: 9$ $+^{5}: 9$ $+^{5}: 9$ $+^{5}: 9$ $+^{5}: 9$ $+^{5}: 9$ $+^{5}: 9$ $+^{5}: 9$ $+^{5}: 9$ $+^{5}: 9$ $+^{5}: 12$ 1 ⁴ : 1 $+^{4}: 1$ $+^{5}: 1$ $+^{5}: 12$ $+^{5}: 12$ 1 ⁴ : 1 $+^{5}: 1$ $+^{4}: 1$ $+^{5}: 1$ $+^{5}: 12$ 1 ⁴ : 1 $+^{5}: 1$ $+^{5}: 1$ $+^{5}: 12$ 1 ⁵ : 1 $+^{5}: 1$ $+^{5}: 1$ $+^{5}: 12$ 1 ⁵ : 1 $+^{5}: 1$ $+^{5}: 1$ $+^{5}: 12$ 1 ⁶ : 1 $+^{5}: 1$ $+^{5}: 1$ $+^{5}: 12$ 1 ⁶ : 1 $+^{5}: 1$ $+^{5}: 1$ $+^{5}: 12$ 1 ⁷ : 1 $+^{5}: 1$ $+^{5}: 1$ $+^{5}: 12$ 1 ⁷ : 1 $+^{5}: 1$ $+^{5}: 1$ $+^{5}: 12$ 1 ⁷ : 1 $+^{5}: 1$ $+^{5}: 1$ $+^{5}: 12$ 1 ⁷ : 1 $+^{5}: 1$ $+^{5}: 1$ $+^{5}: 12$ 1 ⁷ : 1 $+^{5}: 1$ $+^{5}: 1$ $+^{5}: 12$ 1 ⁷ : 1 $+^{5}: 1$ $+^{5}: 1$ $+^{5}: 12$ $+^{5}: 12$ 1 ⁷ : 1 $+^{5}: 1$ $+^{5}: 12$ $+^{5}: 12$ 1 ⁷ : 1 $+^{5}: 12$ $+^{5}: 12$ $+^{5}: 12$ 1 ⁷ : 1 $+^{5}: 12$ $+^{5}: 12$ $+^{5}: 12$ $+^{5}: 12$ 1 ⁷ : 12 $+^{5}: 12$. 1'=	1	3' = 3	4	- 9	q' = <mark>9</mark>	10'= 10	12'= 12		
$\frac{1^{4} = 1}{1^{5} = 1} \frac{3^{4} = 3}{3^{5} = 4} \frac{4^{5} = 9}{4^{5} = 10} \frac{4^{5} = 3}{4^{5} = 3} \frac{10^{5} = 3}{10^{5} = 4} \frac{12^{5} = 1}{12^{5} = 12}$ $\frac{1^{5} = 1}{3^{5} = 1} \frac{3^{5} = 10}{4^{5} = 1} \frac{4^{5} = 1}{4^{5} = 1} \frac{10^{5} = 1}{10^{5} = 1} \frac{12^{5} = 1}{12^{5} = 1}$ $\frac{1}{1} \frac{1}{1} \frac{1}{3} \frac{1}{6} \frac{1}{10^{5} = 1} \frac{1}{10^{5} = 1}$	$\frac{1}{1} = 1 3^{+} = 3 4^{+} = 0 4^{+} = 4 10^{-2} = 3 11^{2} = 1 11^{$							102: 9	12 ² : 1		
$\frac{1^{5} \cdot 1}{1^{5} \cdot 1} = \frac{3^{5} \cdot 4}{4^{5} \cdot 1} = \frac{4^{5} \cdot 10}{4^{5} \cdot 1} = \frac{3^{5} \cdot 3}{10^{5} \cdot 1} = \frac{10^{5} \cdot 4}{10^{5} \cdot 1} = \frac{11^{5} \cdot 12}{11^{5} \cdot 1} = \frac{11^{5} \cdot 1}{11^{5} \cdot 1} = 11^$	$\frac{1^{5} \cdot 1}{1^{5} \cdot 1} \frac{3^{5} \cdot 2}{3^{5} \cdot 1} \frac{4^{5} \cdot 10}{4^{5} \cdot 1} \frac{9^{5} \cdot 3}{10^{5} \cdot 1} \frac{10^{5} \cdot 9}{12^{5} \cdot 1} \frac{11^{5} \cdot 12}{10^{5} \cdot 1} \frac{11^{5} \cdot 1}{10^{5} $	13 =									
$\frac{1^{6} \cdot 1}{3} = \frac{3^{6} \cdot 1}{3} = \frac{4^{6} \cdot 1}{4} = \frac{9^{6} \cdot 1}{9^{6} \cdot 1} = \frac{10^{6} \cdot 1}{10^{6} \cdot 1} = 10$	1 ⁶ : 1 3 ⁶ : 1 4 ⁶ : 1 9 ⁶ : 1 10 ⁶ : 1 12 ⁶ : 1 J J J J J J J J J J J J J J J J J J J										
$\frac{1}{1}$ $\frac{1}$	$\frac{1}{1}$ $\frac{1}$		1	<u>3⁵ : 9</u>			6	10 ³ · 4			
stater 1 order 3 order 6 order 3 order 6 order 2 $\{1, 3, 9\}_{//}$ The order of the group is 6, and 4 does not divide 6, so there can be no subgroup of order 4 by Lagrange's theorem. ₁₁ $\frac{1}{1}$ $\frac{1}{3}$ $\frac{3}{6}$ $\frac{9}{12}$ $\frac{1}{3}$ $\frac{3}{9}$ $\frac{9}{3}$ $\frac{12}{6}$ (12) $\frac{3}{10}$ $\frac{9}{12}$ $\frac{3}{12}$ $\frac{6}{6}$ (12) $\frac{1}{10}$ $\frac{1}{10}$ $\frac{3}{12}$ $\frac{6}{10}$ (10) $(1$	order 1 order 3 order 3 order 3 order 4 order 2 $[1,3,9]_{p}$ Ine order of the group is 6, and 4 does not divide 6, so there can be no subgroup of order 4 by Logiange's theorem.p X_{15} 1 3 6 9 12 1 1 3 6 9 12 3 3 9 3 12 6 No element 1 3 3 hos no 6 6 3 6 9 12 1 3 hos no 10 </th <th><u> 1 </u></th> <th>1</th> <th>3 1</th> <th>4</th> <th>· 1</th> <th>9²</th> <th>10": 1</th> <th></th> <th></th> <th></th>	<u> 1 </u>	1	3 1	4	· 1	9 ²	10": 1			
$\begin{bmatrix} 21, 3, 9 \end{bmatrix}_{H}$ The order of the group is 6, and 4 does not divide 6, so there can be no subgroup of order 4 by Lagrange's theorem. _H $\frac{X_{15}}{1} = \begin{bmatrix} 1 & 3 & 6 & 9 & 12 \\ 1 & 1 & 3 & 6 & 9 & 12 \\ \hline 3 & 3 & 9 & 3 & 12 & 6 \\\hline 6 & 6 & 3 & 6 & 9 & 12 \\\hline 6 & 6 & 3 & 6 & 9 & 12 \\\hline 9 & 9 & 12 & 9 & 6 & 3 \\\hline 9 & 9 & 12 & 9 & 6 & 3 \\\hline \end{array}$	$\begin{array}{c} \begin{array}{c} 1 & 1 & 3 & 6 & 9 & 12 \\ \hline 1 & 1 & 3 & 6 & 9 & 12 \\ \hline 1 & 1 & 3 & 6 & 9 & 12 \\ \hline 3 & 3 & 9 & 3 & 12 & 6 \\ \hline 6 & 6 & 3 & 6 & 9 & 12 \\ \hline 1 & 1 & 2 & 6 & 9 & 12 \\ \hline 1 & 1 & 3 & 6 & 9 & 12 \\ \hline 3 & 3 & 9 & 3 & 12 & 6 \\ \hline 6 & 6 & 3 & 6 & 9 & 12 \\ \hline 1 & 1 & 2 & 6 & 9 & 12 \\ \hline 1 & 1 & 3 & 6 & 9 & 12 \\ \hline 1 & 1 & 3 & 6 & 9 & 12 \\ \hline 1 & 1 & 3 & 6 & 9 & 12 \\ \hline 1 & 1 & 3 & 6 & 9 & 12 \\ \hline 1 & 1 & 3 & 6 & 9 & 12 \\ \hline 1 & 1 & 3 & 6 & 9 & 12 \\ \hline 1 & 1 & 3 & 6 & 9 & 12 \\ \hline 1 & 1 & 3 & 6 & 9 & 12 \\ \hline 1 & 1 & 3 & 6 & 9 & 12 \\ \hline 1 & 1 & 3 & 6 & 9 & 12 \\ \hline 1 & 1 & 2 & 6 & 12 & 3 & 9 \\ \hline 1 & 1 & 2 & 6 & 12 & 3 & 9 \\ \hline 1 & 1 & 1 & 12 & 12 & 6 & 12 & 3 & 9 \\ \hline 1 & 1 & 12 & 12 & 6 & 12 & 3 & 9 \\ \hline 1 & 12 & 12 & 6 & 12 & 3 & 9 \\ \hline 1 & 12 & 12 & 6 & 12 & 3 & 9 \\ \hline 1 & 12 & 12 & 6 & 12 & 3 & 9 \\ \hline 1 & 13 & 100t & 10 & every row, not every row has an inverse \\ \hline 1 & 15 & 100t & 10 & every row, not every row has an inverse \\ \hline 1 & 15 & 100t & 10 & every row, not every row has an inverse \\ \hline 1 & 100t & 10 & every row has an inverse \\ \hline 1 & 100t & 10 & every row has an inverse \\ \hline 1 & 100t & 10 & every row has an inverse \\ \hline 1 & 100t & 10 & every row has an inverse \\ \hline 1 & 100t & 10 & every row has an inverse \\ \hline 1 & 100t & 10 & every row has an inverse \\ \hline 1 & 100t & 10 & every row has an inverse \\ \hline 1 & 100t & 10 & every row has an inverse \\ \hline 1 & 100t & 10 & every row has an inverse \\ \hline 1 & 100t & 10 & every row has an inverse \\ \hline 1 & 100t & 10 & every row has an inverse \\ \hline 1 & 100t & 10 & every row has an inverse \\ \hline 1 & 100t & 10 & every row has an inverse \\ \hline 1 & 100t & 10 & every row has an inverse \\ \hline 1 & 100t & 10 & every row has an inverse \\ \hline 1 & 100t & 10 & every row has an inverse \\ \hline 1 & 100t & 10 & every row has an inverse \\ \hline 1 & 100t & 10 & every row has a row row row row row row row row row row$	L nraec	1	mater 3	m	dar 6	order 3	stater 6			
The order of the group is 6, and 4 does not divide 6, so there can be no subgroup of order 4 by Lagrange's theorem. $\frac{x_{15}}{1}$ $\frac{1}{3}$ $\frac{3}{6}$ $\frac{9}{12}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{6}{6}$ $\frac{9}{12}$ $\frac{3}{3}$ $\frac{9}{3}$ $\frac{3}{12}$ $\frac{6}{6}$ $\frac{6}{12}$ No element 1 $\frac{2}{3}$ 3 has no in 2 nd row 1 column inverse $\frac{6}{6}$ $\frac{6}{3}$ $\frac{6}{9}$ $\frac{9}{12}$	The order of the group is 6, and 4 does not divide 6, so there can be no subgroup of order 4 by Logrange's theorem.y $\frac{x_{15}}{1} \frac{1}{3} \frac{3}{6} \frac{9}{9} \frac{12}{12}$ $\frac{3}{3} \frac{9}{3} \frac{3}{12} \frac{6}{6} \frac{6}{12} \frac{6}{12} \frac{6}{12} \frac{6}{12} \frac{1}{12} \frac{3}{12} \frac{6}{12} \frac{6}{12} \frac{1}{12} \frac{1}{12}$		•				~ + C	osxsiny			
The order of the group is 6, and 4 does not divide 6, so there can be no subgroup of order 4 by Lagrange's theorem. $\frac{x_{15}}{1} \frac{1}{3} \frac{3}{6} \frac{9}{9} \frac{12}{12}$ $\frac{3}{3} \frac{9}{3} \frac{3}{12} \frac{6}{6} \frac{6}{12}$ $\frac{3}{12} \frac{9}{12} \frac{3}{12} \frac{6}{12} \frac{6}{12} \frac{1}{12} \frac{1}{12} \frac{3}{12} \frac{6}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{3}{12} \frac{6}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{3}{12} \frac{6}{12} \frac{1}{12} \frac{1}{12$	The order of the group is 6, and 4 does not divide 6, so there can be no subgroup of order 4 by Logiange's theorem	\$1.3.9	2				tcosi		C.		
Subgroup of order 4 by Lagrange's theorem.,	Subgroup of order 4 by Lagrange's theorem. m $\frac{x_{15}}{1}$ 1 3 6 9 12 1 1 3 6 9 12 3 3 9 3 12 6 No element 1 4 3 has no in 2 nd rout column inverse 6 6 3 6 9 12 9 9 12 9 6 3 12 12 6 12 3 9 Another in every row, not every row has an inverse		- //	sin	(x +	VII			30.		
Subgroup of order 4 by Laglange's theorem. ₁₁ $\frac{X_{15}}{1}$ 1 3 6 9 12 1 1 3 6 9 12 3 3 9 3 12 6 No element 1 \therefore 3 has no in 2 ^{nat} rowl column inverse 6 6 3 6 9 12 9 9 12 9 6 3	Subgroup of order 4 by Lagrange's theorem. m X_{15} 1 3 6 9 12 1 1 3 6 9 12 3 3 9 3 12 6 No element 1 4 3 has no in 2 ^{ndl} row 1 column inverse 6 6 3 6 9 12 9 9 12 9 6 3 12 12 6 12 3 9 DCE 1 is not in every row, not every row has an inverse			2				872			
Subgroup of order 4 by Lagrange's theorem. X_{15} 1 3 6 9 12 1 1 3 6 9 12 3 3 9 3 12 6 No element 1 \therefore 3 has no in 2 ⁿ⁴ roul column inverse 6 6 3 6 9 12 9 9 12 9 6 3	Subgroup of order 4 by Logrange's theorem. y X_{15} 1 3 6 9 12 1 1 3 6 9 12 3 3 9 3 12 6 No element 1 4 3 hos no in 2 ^{ndd} rowl column inverse 6 6 3 6 9 12 9 9 12 9 6 3 12 12 6 12 3 9 DCE 1 is not in every row, not every row has an inverse	íne ora	aer o	f the g	roup	IS 6,	and 4	does not	awae 6, so	there can be	e no
1 1 3 6 9 12 3 3 9 3 12 6 \leftarrow No element 1 \therefore 3 has no 3 3 9 3 12 6 \leftarrow No element 1 \therefore 3 has no 6 6 3 6 9 12 9 9 12 9 6 3	1 1 3 6 9 12 3 3 9 3 12 6 No element 1 \therefore 3 has no 6 6 3 6 9 12 in 2 nd row coull column inverse 6 6 3 6 9 12 inverse inverse 9 9 12 9 6 3 12 12 12 12 12 3 9 inverse not in every row, not every row has an inverse			-	•						
1 1 3 6 9 12 3 3 9 3 12 6 ϵ No element 1 \cdot 3 hos no 3 3 9 3 12 6 ϵ No element 1 \cdot 3 hos no 6 6 3 6 9 12 ϵ ϵ No element 1 \cdot 3 hos no in ϵ	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	10		4	N E	-b+√2-4a			π.	
1 1 3 6 9 12 3 3 9 3 12 6 \sim No element 1 \sim 3 has no 3 3 9 3 12 6 \sim No element 1 \sim 3 has no 6 6 3 6 9 12 \sim <	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	×					2a				
1 1 3 6 9 12 3 3 9 3 12 6 \sim No element 1 \sim 3 has no 3 3 9 3 12 6 \sim No element 1 \sim 3 has no 6 6 3 6 9 12 \sim <	1 1 3 6 9 12 3 3 9 3 12 6 No element 1 \therefore 3 has no 6 6 3 6 9 12 \therefore No element 1 \therefore 3 has no 6 6 3 6 9 12 \therefore 10 in 2 ^{ndl} row! column inverse 9 9 12 9 6 3 $=$ $=$ $=$ 12 12 6 12 3 9 $=$ $=$ $=$ $=$ nCe 1 is not in every row, not every row has an inverse $=$ $=$ $=$	X 15	-1	3	6	9	12				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{3}{3} = \frac{3}{9} = \frac{3}{12} = \frac{6}{6} = \frac{1}{12} = \frac{6}{12} = \frac{1}{12} = \frac{3}{12} = \frac{1}{12} = \frac$	0	1	3	6	G	12				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	26	6					No	element 1	2 has	
6 6 3 6 9 12 9 9 12 9 6 3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	3	9	3	12	6				
	nce 1 is not in every row, not every row has an inverse	6	6	3	6	9	12				
	ince 1 is not in every row, not every row has an inverse	- 0	9	12	9	6	2				
12 12 6 12 3 9	nce 1 is not in every row, not every row has an inverse										
	ince 1 is not in every row, not every row has an inverse Since no inverse, cannor be a group.	12	12	6	17	3	9	- 6			
	nce 1 is not in every row, not every row has an inverse Since no inverse, cannor be a group. p										
	Sinde no more, common de la igroup.	ince Show		s no	t r		ry row	, not e	rery row	nas an	inverse
nce i is not in every row, not every row has an inverse.		21110		U INVE	IX,	CANN	UT DE	0 30	roup.		
Since no inverse, cannor be a group.											
Since no inverse, cannor be a group.											
Since no inverse, cannor be a group.											
Since no inverse, cannor be a group.											
Since no inverse, cannor be a group.											
Since no inverse, cannor be a group.											

5.2: Realuring Matrices to Diagonal Form

- 2. The two sequences x_n and y_n satisfy the recurrence relations
 - $x_1 = 2$ $y_1 = 1$ $x_{n+1} = 5x_n - y_n$ $y_{n+1} = 3x_n + y_n$ $n \ge 1.$
 - (a) Find the value of x_3 .

These recurrence relations can be written in matrix form as

$$\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \qquad \begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix} = \mathbf{A} \begin{pmatrix} x_n \\ y_n \end{pmatrix}, \qquad n \ge 1,$$

where $\mathbf{A} = \begin{pmatrix} 5 & -1 \\ 3 & 1 \end{pmatrix}$. $(\times + \gamma)$

(b) Find

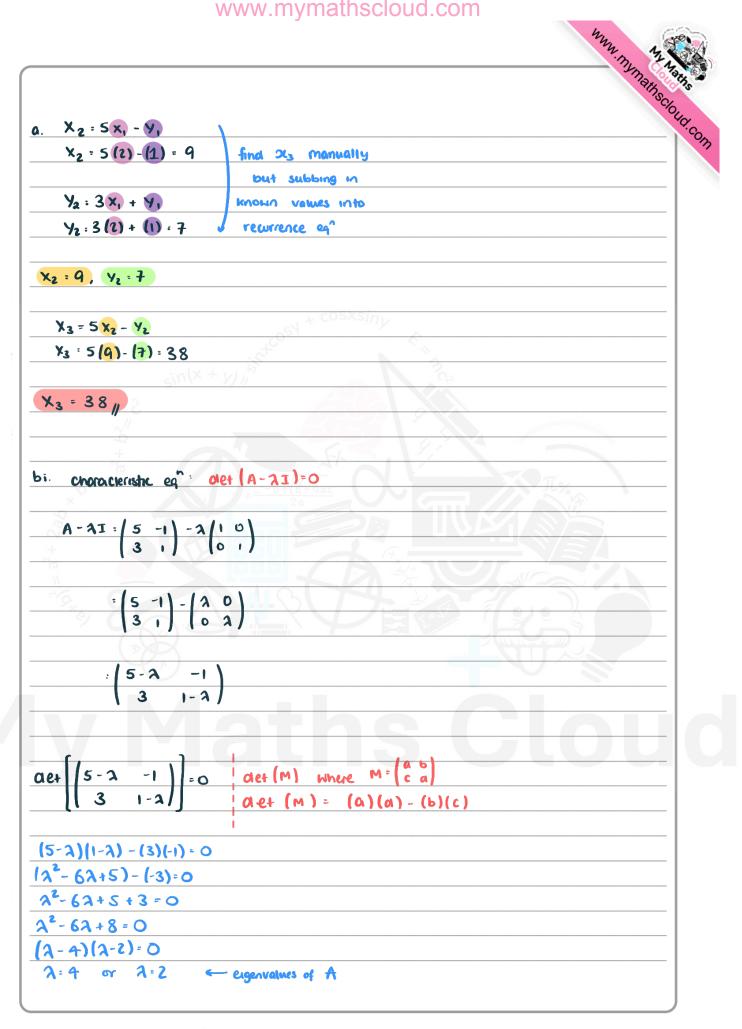
- (i) the eigenvalues of A,
- (ii) the corresponding eigenvectors of A.
- (c) Hence write down matrices **P** and **D** such that $P^{-1}AP = D$, where **D** is a diagonal matrix. (2)

New sequences u_n and v_n can be formed from x_n and y_n using the transformation

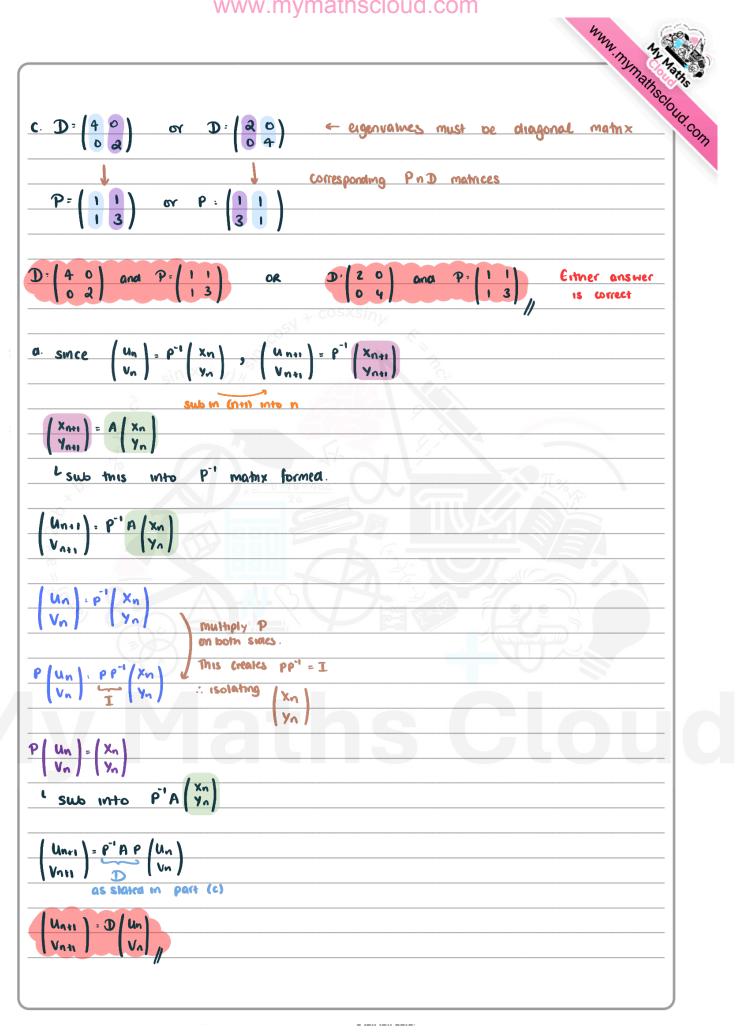
$$\begin{pmatrix} u_n \\ v_n \end{pmatrix} = \mathbf{P}^{-1} \begin{pmatrix} x_n \\ y_n \end{pmatrix}.$$

(d) Show that $\begin{pmatrix} u_{n+1} \\ v_{n+1} \end{pmatrix} = \mathbf{D} \begin{pmatrix} u_n \\ v_n \end{pmatrix}$.

(2)


(e) Hence find closed form expressions for the original sequences x_n and y_n .

(5) 📉


(Total for Question 2 is 16 marks)

(2)

(5)

	www. m. M.
	www.mymainsclou
eigenvalues of A: 4 or 2	SCIOL
ii. $A\left(\frac{x}{y}\right) = \lambda\left(\frac{x}{y}\right)$	
$ \begin{pmatrix} 5 & -1 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 4 \begin{pmatrix} x \\ y \end{pmatrix} $	
$ \frac{(5\chi - \gamma)}{(3\chi + \gamma)} = \frac{(4\chi)}{(4\gamma)} $	
$\sin[x + y]_{ij}$	
52-y=42 O	
32+4=44 @	
+	
0 52-y:42	π.,
2. 4	
when x_{i1} , y_{i1}	
" ergenvector is (i) for eigenvalue 4.	
$A(\frac{x}{y}):\lambda(\frac{x}{y})$	225
$(5^{-1})(x) = 2(x)$	
$ \begin{pmatrix} 5 & -1 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 2 \begin{pmatrix} x \\ y \end{pmatrix} $	
N Nathe []	
$ \begin{pmatrix} 5\chi - \gamma \\ 3\chi + \gamma \end{pmatrix} = \begin{pmatrix} 2\chi \\ 2\gamma \end{pmatrix} $	
132+4/ 1641	
$\frac{5 \alpha - \gamma = 2 \alpha}{3 \alpha + \gamma = 2 \gamma} \textcircled{0}$	
32+4:54 2	
() 5x-y:2x	
<u>3</u> 2: y	
when x:1, y.3	
" ergenvector is (3) for eigenvalue 2.	

www.mymathscloud.com e. We will use $D = \begin{pmatrix} 2 & 0 \\ 0 & 4 \end{pmatrix}$ however can also use D: (40) sub in $\left(\begin{array}{c}
U_{n_{11}} \\
V_{n_{11}}
\end{array}\right) = \left(\begin{array}{c}
2 \\
0 \\
4
\end{array}\right) \left(\begin{array}{c}
U_{n} \\
V_{n}
\end{array}\right)$ Unii) :/ 2Un Vali (4Vn) Unti = 2Un Vn+1 3 4Vn D can be rewritten as: Un= U1 × 2"-1 V = V1 × 4" $\begin{pmatrix} x_n \\ y_n \end{pmatrix} = P \begin{pmatrix} u_n \\ V_n \end{pmatrix} \Rightarrow \begin{pmatrix} x_n \\ y_n \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} u_n \\ V_n \end{pmatrix}$ use corresponding P matrix ond sub in $= \left(\begin{array}{c} \chi_n \\ \chi_n \end{array} \right) : \left(\begin{array}{c} U_n + V_n \\ 3U_n + V_n \end{array} \right)$ $\begin{pmatrix} X \\ y_n \end{pmatrix} = \begin{pmatrix} U_1 \\ X \\ 3 \\ (u_1 \\ u_2)^{n_1} \end{pmatrix}$ + V1 × 4"-1 3(u, × 2") + V, × 4"" Using $\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ sub in n=1 and solve for u, and vi $\frac{\begin{pmatrix} \mathbf{x}_{1} \\ \mathbf{y}_{1} \end{pmatrix}}{\begin{pmatrix} \mathbf{y}_{1} \\ \mathbf{y}_{1} \end{pmatrix}} = \begin{pmatrix} \mathbf{u}_{1} \times \mathbf{a}^{\mathbf{P}^{1}} & + & \mathbf{V}_{1} \times \mathbf{u}^{\mathbf{P}^{1}} \\ \mathbf{S} (\mathbf{u}_{1} \times \mathbf{a}^{\mathbf{P}^{1}}) & + & \mathbf{V}_{1} \times \mathbf{u}^{\mathbf{P}^{1}} \end{pmatrix}$ $\begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} u_1 + V_1 \\ 3u_1 + V_1 \end{pmatrix}$

	Haneously to solve	TOP MI GNOL	<u>vi.</u>	www.myn
$u_1 + V_1 = 2$				
34, +1, -1				
-2u, = 1				
u,:-"12 -	Sub in Homed			
	out value of u	•		
V1=2-U1	to find v,	+ cosxsiny		
V1= 2- (-11		51	E.	
VI: 5h	$\sin(x + y)$		34	
	2			
$U_1 = -\frac{1}{2}$ and	d Vit a	H G M		
L sub back	into Oln and Yn	eq [°] .	91	
<u>````````````````````````````````</u>) 	V2-40C		π.,
×		20		A A A
$X_n = (-\frac{1}{2})a^{n-1}$	+ (5) 4"			
Yn = (-3)2"	+ (⁵ ₂) 4 ⁿ⁻¹	(4		
N C			4	
				990 8
	E)			
		FAG		

3.1: Loci on on Argonal Diogram

3. (a) Sketch, on an Argand diagram, the arc given by the locus of points z in the complex plane satisfying

$$\arg\left(\frac{z}{z-25i}\right) = \frac{11\pi}{12}. \quad \leftarrow \begin{array}{c} \text{LOCUS} \quad \text{explained} \\ \hline \begin{array}{c} \text{@end} \quad \text{of } \end{array} \end{array}$$
(2)

The centre of the circle containing this arc is x + yi where

$$x = -\frac{25}{2} \left(2 + \sqrt{3}\right).$$

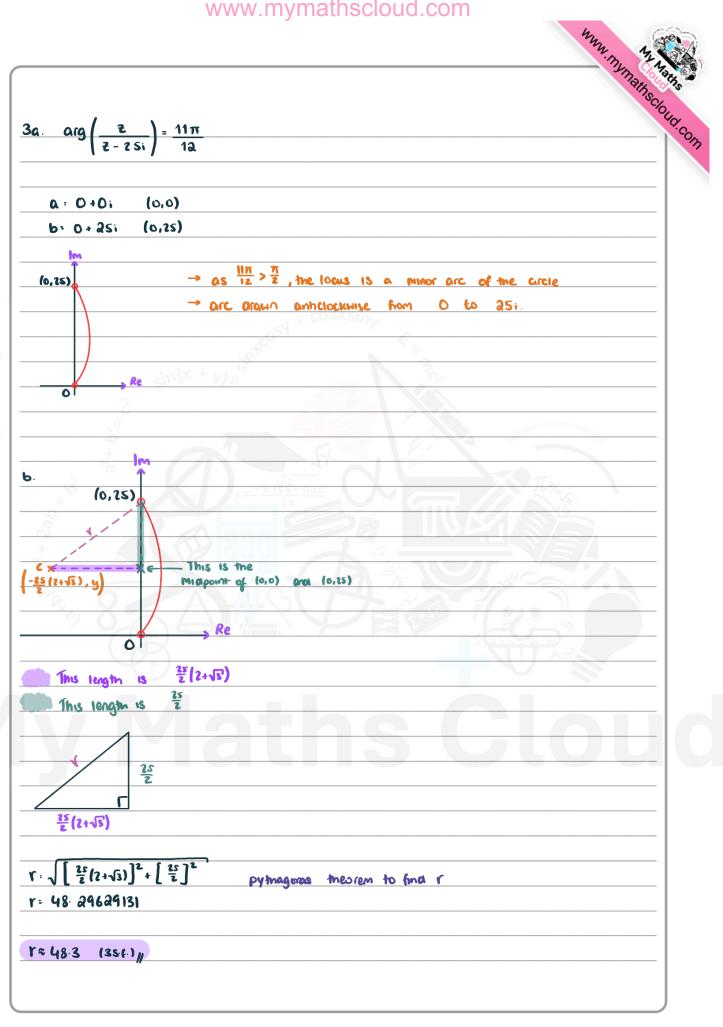
(b) Find the radius of this circle, giving your answer to 3 decimal places.

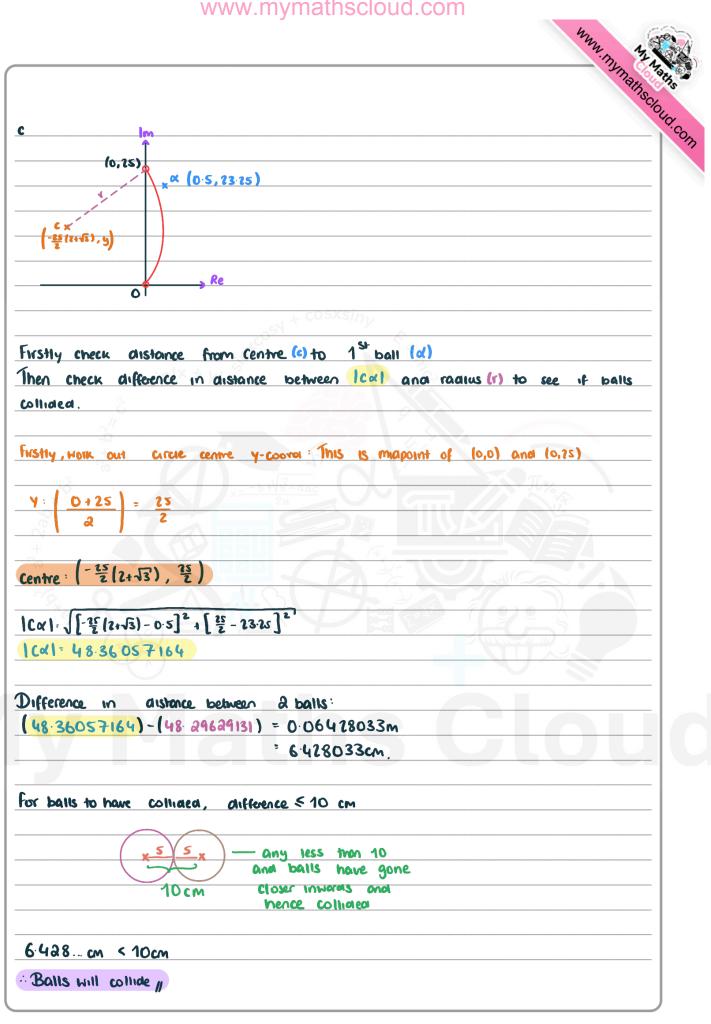
(4)

In a game, players take turns to roll balls along a horizontal surface from a fixed starting position to a fixed target point 25 metres away.

The game can be modelled in the complex plane, with the starting position at the origin and the target at the point 25i, where the units are metres.

In a particular game, the first player's ball has come to rest with its centre at 0.5 + 23.25i. The second player's ball is following the path sketched in part (a).


Given that the radius of each ball is approximately 5 centimetres,


(c) use this model to determine whether the second player's ball will hit the first player's ball.

(4)

(Total for Question 4 is 10 marks)

www.mymainscloud.com The locus of points z that satisfy $\arg\left(\frac{2-\alpha}{2-b}\right) = 9$ where SER, S>O and a, DEC, is an arc of a circle with enapoints A and B representing the COMPLEX NOIS & and by fespectively. The locus is the arc of a circle drawn anticlochwise from A to B. Im' arg (2-a). 9 Bo A Re 0 9< 7 then the locus is a major are of a circle ١f $9 = \frac{\pi}{2}$ then the lows is semi-arcie. 0 I 3> 7 then minor ore of a circle ۰f 0. the lows is

1.4 : Divisibility Tests

4. A positive integer *n* satisfies the inequality 99 < n < 1000.

The integer n is written as a three digit number abc such that

n = 100a + 10b + c,

where the digits a, b, and c are each integers between 0 and 9 inclusive, $a \neq 0$.

The integer *n* has the following three properties:

- *n* is divisible by 11, \leftarrow face # 1
- the sum of the digits of n is odd, \leftarrow face #
- $n \equiv 5 \pmod{9}$. \leftarrow fact # 3

Use this information to find all possible values for n, making your reasoning clear.

1.	www.t
4. #1: A-b+c=11	
	1K 1 a-6+c is (9)-(0)+(9)=18
•	of a-b+c = 18
	y where he or 1
	γεωρα τε σ π 1 := Ο or 11
#2 = a+b+c =	$= 2q + 1 q \in \mathbb{Z}$
	sy + cosxsiny
#3: 100a + 10b + 0	$C = 5 \pmod{9}$
100 = 1 mod	
10 = 1 mod C	
can now be	rewalka as
A+ 6+ C = 5	
* possible value	es of atbrc : 5, 14, 23, 32,
×	$x = \frac{1}{2a}$
Using faces 10 a	ana (2), k = 1.
This is because	if $a-b+c=0$, then $a+b+c=ab$.
ab is alway	ys even - this contradicts #2.
A-6+C=11	
- Y O Q	min value max volue
C P	(1)+(0)+(0) (4)+(4)
From faces (2)	and $3, 1 \leq 0 + b + c \leq 27$
- A + b + c	con only extre be 5 or 23
0+b+c = 14	as #2 staks at b+c = odd no.
-> a+b+c=	
Q+ P+C =	= 23
<u>0-6+C=1</u>	
<u> </u>	

	www.myme
(1) and (2)	
Q-b+C:11	
0+b+C=5 C	
-ab = 6	
b = -3	
	Solving for b
	(
(1) and (3)	cosxsin
Q-b+C:11	est to the second secon
<u>A+b+C=23</u>	
-ab = -12 $din(x +)$	
b ≈ 6 g ~	
~ ^{//}	
euther b= -3 or b=6	A Free Print and Andrew
SINCE 0 \$ 6 \$ 9, 6 = 1	6
×	x=2a
Q+b+c=23	
a + 6 + c = 23	
a+c = 17	
° 0000	
15059 and 05059	
Q= 8 or 9 Conly 2	
	iters that will work
	athe llai
n= 869 or 968	H
	//